

Using the TI-Nspire Notes page for open-ended assessments

James Lam Felicity Hung

QR code for resources:

- CAS Notes page examples
- Year 11 Methods problemsolving task example

QR code for Padlet:

• Share your ideas with us and your peers here!

Part 1.1 Marking Scheme

Question 2 (15 marks)

Texas places two traffic cones at (4, 6) and (6, 6). Cassie starts at the point (0, 0) and has been instructed to construct a parabola which:

- Can navigate around and above the traffic cones (and not hit them)
- Has another *x*-intercept where its *x*-coordinate is between 8 and 12.
- Has a turning point with a *y*-coordinate less than 15.

a) Create a quadratic function such that it fulfills the criteria above.

Check function against conditions (use CAS file if necessary)

•	f(4) > 6 and $f(6) > 6$	A1
•	x-intercept other than $(0, 0)$ is between $x = 8$ and $x = 12$.	A1
	(Inclusive; accept $x = 8$ and $x = 12$)	
•	Turning point of y-coordinate < 15	A1

Your quadratic function is:

f(x) =

Part 1.1 Notes page example

Input quadratic function:

$$\mathbf{f}(x) := \frac{-x^2}{2} + 5 \cdot x \cdot Done$$

Working space:

Condition Checks

Above cones at (4, 6) & (6, 6) f(4)>6 and f(6)>6 + truex-intercept between x=8 and x=12 $8\leq right(solve(f(x)=0,x)|7<x<13)\leq 12 + true$ Turning point below y=15 f(right(fMax(f(x),x)))<15 + true

Part 1.2 Marking Scheme

- b) Using your created quadratic function *f*, evaluate:
 - i) f(4) Correct value A1
 - ii) f(6) Correct value A1
- c) Sketch your quadratic function on the graph in part a). Label all axial intercepts and the turning point with their coordinates.
 - Correct inverted parabolic shape A1
 Both *x*-intercepts labelled A1
 - Turning point labelled A1

Texas is about to draw a line with the equation y = kx + 40. Before he draws it, he asks Cassie for a value of k such that this line will be a **tangent** to the graph of f.

d) Find the value of *k* correct to one decimal place.

Evidence of finding the discriminant of <u>correct</u> equation. M1 i.e. Discriminant of 0 = f(x) - kx - 40

Let $\Delta = 0$ for 1 solution. Solve for values of k.

Correct <u>negative</u> value of k.

A1

Part 1.2 CAS Notes page example

Other

a:=list>mat(polyCoeffs(
$$f(x)-k\cdot x-40$$
))[1 1] $\cdot \frac{-1}{2}$

b:=list>mat(polyCoeffs($f(x)-k \cdot x-40$))[1 2] $\cdot -(k-5)$] c:=list>mat(polyCoeffs($f(x)-k \cdot x-40$))[1 3] $\cdot -40$

Part 1.3 Marking Scheme

The function f has been dilated from the x-axis by a factor of $\frac{3}{2}$ to create the function g.

e) For the function *g*, find the new locations of the:

i)	Starting point (0, 0)	A1
ii)	Turning point Correct coordinates	A1

f) Does the function g fulfill all three criteria specified for function f? Explain your answer for each criteria.

Criteria	Explanation
Can navigate around and above the	Students should answer YES.
traffic cones (and not hit them)	Explanation: Show $g(4) > 6$ and $g(6) > 6$ explicitly, or
	describe this qualitatively. (A1 for both YES and explanation)
Has another $r_{\rm intercent}$ where its $r_{\rm intercent}$	Students should answer VES
coordinate is between 8 and 12	Explanation: State correct x_{-} intercent that's between
	x = 8 and $x = 12$. (A1 for both YES and explanation)
	Should be the same as function f .
Has a turning point with a y-coordinate	Students can answer YES or NO, depending on their
less than 15.	function <i>g</i> .
	If NO, then $y \ge 15$.
	If YES, then $y < 15$.
	(A1 for NO/YES and explanation)
Does g fulfill all 3 criteria? (Circle one)	YES / NO (No mark for this)

Part 1.3 CAS Notes page example

Sample task and marking scheme (Functions Investigation Part 2, Question 2)

Try creating a CAS file which can assist with marking student responses to the task below.

Question 2 (11 marks) Check CAS file for answers.

Cassie wants to try to reverse parallel park as well, starting from the point (4, 10). However, the parked car beside her starting point is larger than the case in **Question 1**; she will need to ensure she avoids hitting this car.

Texas has instructed Cassie to create a cubic function f_1 in stationary point of inflection form:

$$f_1(x) = a(x-h)^3 + k$$

The following criteria must be satisfied for the new function f_1 :

- Its right endpoint is (4, 10).
- Its left endpoint is its x-intercept, which has an x-coordinate between $\frac{1}{2}$ and 2.
- The curve must be below the point $\left(\frac{5}{2}, 6\right)$ when $x = \frac{5}{2}$.

i.e. The path must not hit the parked car.

The width of Cassie's car may be considered as negligible. i.e. Width of car = 0 m.

a) Find a rule for the new cubic function, f_1 .

3 marks in total; check for conditions satisfied:

The rule passes through (4, 10)
 The left *x*-intercept is between ¹/₂ and 2 inclusive.

•
$$f\left(\frac{5}{2}\right) < 6$$
 A1

*Note: Maximum of 1 mark if the function created is not a cubic.

*Note: Q2b – 2g are consequential to the student's function in Q2a.

b) State the coordinates of the x-intercept of the graph of f_1 , correct to 2 decimal places.

Correct x-intercept in coordinate form.A1Must be in coordinate form, not written as x = a.

c) State the domain of f_1 correct to 2 decimal places, assuming both endpoints are inclusive.

Correct domain.

A1

A1

d) State the coordinates of the stationary point of inflection of f_1 .

Correct stationary point of inflection.

e) Sketch the graph of $y = f_1(x)$ on the image in part a). Label endpoints and stationary points of inflection with their coordinates correct to 2 decimal places.

3 marks in total:

• Shape A1

- Stationary point of inflection A1
- Endpoints labelled A1/2 x2 Don't penalise open/closed endpoints.

The function f_1 is translated k units to the left to form a new function, f_2 .

f) If f_2 passes through $(\frac{5}{2}, 6)$, find the value of k correct to 2 decimal places.

Correct value of k

A1

A1

g) Hence or otherwise, find all **positive** values of k where the graph of f_2 allows Cassie to **not** hit the large parked car.

Correct interval for k

<u>Glossary</u>

Note: All the instructions below require "Note" page using the TI-Nspire.

TI-Nspire CAS Keystrokes	TI-Nspire CAS Screens
To insert a Maths box, press (ctrl) M.	▲ 1.1 ▶ *Doc RAD □ ×
All commands from the Calculator page can be	
accessed in a Maths box.	
To adjust the font size and font style, press	▲ 1.1 ▶ *Doc RAD □ ×
(menu) > 4 Format > 1 Format text	Format Text ×
	TI-Nspire Sans 🕨
	11 •
	\mathbf{B} I \mathbf{U}
	43 Å 4PC
	A Aa Abo
Define a function : Define $f(x) = x^2 + 5$	
Inside a Maths box, enter the function name	▲ 1.1 ▶ *Doc RAD 🗍 ×
with :=. Press $(enter)$ when the action is done.	Input Function:
	$f(x):=x^2-5 \cdot Done$
Obtain := by pressing <u>ctrl</u>	0
Francisco de la compañía de la conferencia de la contra	
follow, a quick instruction is clear for others to	
function" can be labelled before defining a	
function. In this case, you do not need to use	
Maths box.	
Check whether a simple condition is true: For $f($	$x = x^2 - 5$, check if $f(3) > 2$.
Inside a Maths box, enter the condition that	1.1 1.2 ▶ *Doc RAD X
needs to be checked.	Condition Check
	f (3)>2 • true
If the condition is true, a < true is shown.	
If the condition is false, a • false is shown.	
Check the right-/left-hand side of the equation is	s true:
For $f(x) = x^2 - 5$, check if the positive x-interce	pt is between 1 and 2 (inclusive).
In this case where x-intercept(s) needs to be	1.1 1.2 ▶ *Doc RAD X
solved, an output $x = \pm \sqrt{5}$ is obtained when	Condition Check
solving $f(x) = 0$.	f(3)>2 • true
	$1 \le \operatorname{right}(\operatorname{solve}(\mathbf{f}(x)=0,x) x>0) \le 2 \cdot \operatorname{false}$
To check whether one of the solutions ($\sqrt{5}$ in	0
this example) is true, only the right-hand side of	
the equation needs to be checked. Inerefore, $t_{\rm transform}$	
condition that is required to be checked	
condition that is required to be thethed.	

Show/Hide input or output : To show the turning point of the function $f(x) = x^2 - 5$.				
To view only the turning point's coordinates	I.1 1.2 1.3 ▶ *Doc RAD X X			
(i.e., (0,-5)), press menu > 5 Math Box Options >	TP:			
1 Math Box Attributes > Hide Input	$\mathbf{tpx}:=\mathrm{right}(\mathbf{fMin}(\mathbf{f}(\mathbf{x}),\mathbf{x})) \succ 0$			
Math Box Attributes (Current)	TP: $(tnx + 0, f(tnx) + -5)$			
Input & Output: Show Input & Output 🗸	I.1 1.2 1.3 ▶ *Doc RAD X X			
Insert Symbol: Show Input & Output	тр.			
Display Digits: Hide Output	(1, 2)			
Angle: No Calculation	$(\mathbf{p}_{\mathbf{x}}) = \operatorname{regn}((\operatorname{regn}(\mathbf{x}), \mathbf{x})) \neq 0$			
Wrap expressions	19: (0, -5)			
Show waning indicator				
OK Cancel				
List a Coefficient: Find the coefficient of x for $a(x)$	$(x) = (3x - 2)^2$			
Lise the catalogue key \bigoplus to access polyCoeffs((1.2 1.3 1.4) *Doc DEG (×			
for listing the coefficients of a polynomial	Find coeff of x*			
Use the catalogue key 🝙 to access list mat($\mathbf{g}(\mathbf{x}) := (3 \cdot \mathbf{x} - 2)^2 * Done$			
which converts a list into a row matrix.	list $\operatorname{mat}(\operatorname{polyCoeffs}(\mathbf{g}(x), x))[1 \ 2] + -12$			
$\begin{bmatrix} a \\ b \end{bmatrix}$ traces the element in the a^{th} row and				
the h^{th} column of this matrix				
In this case, the coefficient of x is the second				
coefficient of the polynomial, the value in the				
first row and the second column is listed.				